3. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F - jeśli jesz fałszywe. Liczba, której 50 % jest równe 88, jest więks …
Oblicz 4 do potęgi 5/2 27 do potęgi 2/3 0,04 do potęgi 3/2 (25/81) do potęgi -1/25 (6 do potęgi 1/4) do potęgi - 0,5 Pierwszy z nich to jest gdy mamy zwykłą liczbę naturalną (taką bez minusa) i podnosimy ją do potęgi ujemnej. Wtedy ona zamienia nam się na ułamek, którego licznikiem zawsze jest jedyna, a mianownikiem ta liczba, którą podnosimy do potęgi. Wykładnik przepisujemy już po prostu bez minusu. Gosia1919 zapytał(a) o 19:02 Ile jest 25 do potęgi 1/2? Proszę o szybką odpowiedź ;) 0 ocen | na tak 0% 0 0 Odpowiedz Odpowiedzi blocked odpowiedział(a) o 19:05 x do 1/n = pierwiastek n stopnia z xwięc 25 do 1/2 = pierwiastek z 25 , czyli 5 :) Odpowiedź została zedytowana [Pokaż poprzednią odpowiedź] 0 0 Gosia1919 odpowiedział(a) o 19:06: Dziękuje ;) pawelekkk85 odpowiedział(a) o 19:05 25 do potęgi 1/2 = pierwiastek z 25 czyli 5 :)Pozdrawiam 0 0 Gosia1919 odpowiedział(a) o 19:06: Dziękuje ;) Uważasz, że ktoś się myli? lub 2. Michigan (3): J.J. McCarthy credited Michigan's defense for their work in the 30-24 win against Ohio State, and it was deserved as the Wolverines picked off Kyle McCord twice to secure a third Szybka nawigacja do zadania numer: 5 10 15 20 25 30 35 40 .Liczba \(7^7\cdot 7^8\) jest równa A.\( 7^{56} \) B.\( 14^{56} \) C.\( 49^{15} \) D.\( 7^{15} \) DLiczba \(5^{17}\cdot 6^{17}\) jest równa A.\( 30^{34} \) B.\( 30^{17} \) C.\( 11^{17} \) D.\( 11^{34} \) BLiczba \(2^{20}\cdot 4^{40}\) jest równa A.\( 2^{60} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) BIloczyn \(81^2\cdot 9^4\) jest równy A.\( 3^4 \) B.\( 3^0 \) C.\( 3^{16} \) D.\( 3^{14} \) CLiczba \( 3^{30}\cdot 9^{90} \) jest równa: A.\(3^{210} \) B.\(3^{300} \) C.\(9^{120} \) D.\(27^{2700} \) ALiczba \(2^{40}\cdot 4^{20}\) jest równa A.\( 4^{40} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) AIloraz \(125^5:5^{11}\) jest równy A. \(5^{-6}\) B. \(5^{16}\) C. \(25^{-6}\) D. \(25^2\) DLiczbę \(x=2^2\cdot 16^{-4}\) można zapisać w postaci A.\( x=2^{14} \) B.\( x=2^{-14} \) C.\( x=32^{-2} \) D.\( x=2^{-6} \) BDana jest liczba \(x=63^2\cdot \left (\frac{1}{3} \right )^4\). Wtedy A.\( x=7^2 \) B.\( x=7^{-2} \) C.\( x=3^8 \cdot 7^2 \) D.\( x=3 \cdot 7 \) AIloczyn \(9^{-5}\cdot 3^8\) jest równy A.\( 3^{-4} \) B.\( 3^{-9} \) C.\( 9^{-1} \) D.\( 9^{-9} \) CTrzecia część liczby \(3^{150}\) jest równa: A.\( 1^{50} \) B.\( 1^{150} \) C.\( 3^{50} \) D.\( 3^{149} \) DWyrażenie \(\sqrt{1{,}5^2+0{,}8^2}\) jest równe: A.\( 2{,}89 \) B.\( 2{,}33 \) C.\( 1{,}89 \) D.\( 1{,}70 \) DLiczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa A.\( 1 \) B.\( 4 \) C.\( 9 \) D.\( 36 \) ALiczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa A.\( 4^{-4} \) B.\( 2^{-4} \) C.\( 2^4 \) D.\( 4^4 \) ALiczba \(\sqrt[3]{(27)^{-1}}\cdot 72^0\) jest równa A.\( \frac{1}{3} \) B.\( -\frac{1}{3} \) C.\( 0 \) D.\( 3 \) ALiczba \(7^{\frac{4}{3}}\cdot \sqrt[3]{7^5}\) jest równa A.\( 7^{\frac{4}{5}} \) B.\( 7^3 \) C.\( 7^{\frac{20}{9}} \) D.\( 7^2 \) BLiczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa A.\( -8 \) B.\( -4 \) C.\( 2 \) D.\( 4 \) BLiczba \( 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} \) jest równa: A.\(3^3 \) B.\(3^{\frac{32}{9}} \) C.\(3^4 \) D.\(3^5 \) CLiczba \(\sqrt[3]{3}\cdot \sqrt[6]{3}\) jest równa A.\( \sqrt[9]{3} \) B.\( \sqrt[18]{3} \) C.\( \sqrt[18]{6} \) D.\( \sqrt{3} \) DLiczbę \(\sqrt{32}\) można przedstawić w postaci A.\( 8\sqrt{2} \) B.\( 12\sqrt{3} \) C.\( 4\sqrt{8} \) D.\( 4\sqrt{2} \) DWartość wyrażenia \(5^{100}+5^{100}+5^{100}+5^{100}+5^{100}\) jest równa A.\( 5^{500} \) B.\( 5^{101} \) C.\( 25^{100} \) D.\( 25^{500} \) BDo przedziału \((1, \sqrt{2})\) należy liczba: A.\( \sqrt{3}-1 \) B.\( 2\sqrt{5}-3\sqrt{2} \) C.\( \sqrt{6}-\sqrt{3} \) D.\( \sqrt{5}-\sqrt{1} \) DLiczbę \(0{,}000421\) można zapisać w postaci \(a\cdot 10^k\), gdzie \(a \in \langle 1, 10 \rangle, k \in C\). Wówczas: A.\( a=0{,}421;\ k=-3 \) B.\( a=4{,}21;\ k=-5 \) C.\( a=4{,}21;\ k=-4 \) D.\( a=42{,}1;\ k=-6 \) CWyrażenie \(2\sqrt{50}-4\sqrt{8}\) zapisane w postaci jednej potęgi wynosi A.\( 2^{\frac{3}{2}} \) B.\( 2^{\frac{1}{2}} \) C.\( 2^{-1} \) D.\( 4^{\frac{1}{2}} \) ALiczba \(\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\) jest równa A.\( 2\sqrt{2} \) B.\( 2 \) C.\( 4 \) D.\( \sqrt{10}-\sqrt{6} \) BKtóra z poniższych liczb jest większa od \(1\)? A.\( (0{,}1)^{-3} \) B.\( \left ( \frac{1}{2} \right)^{10} \) C.\( (-2)^{-4} \) D.\( \frac{1}{\sqrt{2}} \) AWiadomo, że \(x^{0,1205}=6\). Wtedy \(x^{0,3615}\) równa się A.\( \sqrt[3]{6} \) B.\( 216 \) C.\( 36 \) D.\( 3 \) BLiczby \(A=(5^4)^3, B=5^5+5^5, C =5^{12} : 5^7, D=5^3 \cdot 5^6\) ustawiono w kolejności malejącej, zatem A.\( B>A>D>C \) B.\( A>D>B>C \) C.\( A>B>D>C \) D.\( C>B>D>A \) BLiczba \(\frac{5^3\cdot 25}{\sqrt{5}}\) jest równa A.\( 5^5\sqrt{5} \) B.\( 5^4\sqrt{5} \) C.\( 5^3\sqrt{5} \) D.\( 5^6\sqrt{5} \) BPo uproszczeniu wyrażenia \( \frac{(a^2:a^3)^{-2}}{a^{-5}} \), gdzie \( a \ne 0 \), otrzymamy A.\(a^7 \) B.\(a^{-3} \) C.\(a^3 \) D.\(a^{-7} \) ALiczba \( \left ( \frac{1}{\left (\sqrt[3]{729}+\sqrt[4]{256}+2 \right)^0} \right )^{-2} \) jest równa A.\(\frac{1}{225} \) B.\(\frac{1}{15} \) C.\(1 \) D.\(15 \) CLiczba \( \frac{1}{2}\cdot 2^{2014} \) jest równa A.\(2^{2013} \) B.\(2^{2012} \) C.\(2^{1007} \) D.\(1^{2014} \) ALiczba \(\left (\sqrt[3]{16}\cdot 4^{-2} \right)^3\) jest równa A.\( 4^4 \) B.\( 4^{-4} \) C.\( 4^{-8} \) D.\( 4^{-12} \) BPołowa sumy \(4^{28}+4^{28}+4^{28}+4^{28}\) jest równa A.\(2^{30} \) B.\(2^{57} \) C.\(2^{63} \) D.\(2^{112} \) BLiczba \(\left ( \frac{3+\sqrt{3}}{\sqrt{3}} \right)^2\) jest równa A.\( 4 \) B.\( 9 \) C.\( \frac{3+\sqrt{3}}{3} \) D.\( 4+2\sqrt{3} \) DLiczba \(3^{\frac{9}{4}}\) jest równa A.\( 3\cdot \sqrt[4]{3} \) B.\( 9\cdot \sqrt[4]{3} \) C.\( 27\cdot \sqrt[4]{3} \) D.\( 3^9\cdot 3^{\frac{1}{4}} \) BWskaż równość prawdziwą. A.\( -256^2=(-256)^2 \) B.\( 256^3=(-256)^3 \) C.\( \sqrt{(-256)^2}=-256 \) D.\( \sqrt[3]{-256}=-\sqrt[3]{256} \) DLiczba \(\frac{\sqrt{8}}{\sqrt[3]{16}}\) jest równa A.\( \sqrt[3]{2} \) B.\( \sqrt[4]{2} \) C.\( \sqrt[5]{2} \) D.\( \sqrt[6]{2} \) DLiczba \(2^{\frac{4}{3}}\cdot \sqrt[3]{2^5}\) jest równa A.\( 2^{\frac{20}{3}} \) B.\( 2 \) C.\( 2^{\frac{4}{5}} \) D.\( 2^3 \) DLiczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa A.\( 45^{40} \) B.\( 45^9 \) C.\( 9^4 \) D.\( 5^4 \) DLiczba \(\sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}}\) jest równa A.\( \sqrt{\frac{16}{63}} \) B.\( \frac{16}{3\sqrt{7}} \) C.\( 1 \) D.\( \frac{3+\sqrt{7}}{3\sqrt{7}} \) BLiczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa A.\( 25 \) B.\( 3^7 \) C.\( 3^3 \) D.\( \frac{25}{27} \) A November 18, 2023 at 11:01 AM PST. Listen. 5:05. SpaceX ’s colossal Starship spacecraft exploded during its second major test flight on Saturday, but achieved new milestones that advance ElonOdpowiedzi blocked odpowiedział(a) o 21:48 4^1/2=216^1/2=48^1/3=2jest to pierwiastekjakby było 8^2/3= pierwiastek trzeciego stopnia z 8, do kwadratu itd. Rozumiesz? 6 0 kasiulenka222 odpowiedział(a) o 17:16 dzięki rozumiem ;) 0 0 kasiulenka222 odpowiedział(a) o 21:44 do potęgi a nie pomnożyć ;p 0 1 MiłoszG. odpowiedział(a) o 21:36 100*0,5= 50 0 2 Uważasz, że ktoś się myli? lub
Uporządkuj malejąco poniższe liczby : (-1/3) ^3 , -(1/2)do potęgi 2 , -5 do potęgi 2 , (-5) do potęgi 2 , (-1/2) do potęgi 2 , -(-1/3) do potęgi 3. Question from @Gabi345 - Gimnazjum - MatematykaOblicz średnią artytm. kolejnych wyrazów ciągu geometrycznego: a) 2,2^2,2^3,,2^10 b) 1/2 (jedna druga) , 1/2^2 (jedna druga i 2 na dole do potęgi 2) , 1/2^3 ( jedna druga i 2 na dole do potęgi 3, .. 1/2^10 (jedna druga i 2 na dole do potęgi 10). Question from @Parmezan123 - Gimnazjum - Matematyka
Wyszło nam, że 2 do potęgi minus 2 to 1 przez 2 do potęgi 2. Podobny. Jak obliczyc ułamek do potęgi minusowej? 25: 5: 27: 3√3: 3: 28: 2√7: 32: 4√2: 2Kalkulator potęg online, który pomaga obliczyć wartość dowolnej dodatniej lub ujemnej liczby całkowitej podniesionej do dowolnej potęgi. Również ten kalkulator potęg ułamkowego pokazuje wyniki potęgi kalkulator dowolnej liczby. Ta przydatna treść obejmie wszystkie powiązane tematy, jak obliczyć je ręcznie i znacznie bardziej
Tłumaczenie hasła "do drugiej potęgi" na angielski. do drugiej. to another to the second to the other for the second to the next. potęgi. power of strength powerhouse. AKTA plus XY do drugiej potęgi plus przesunięcie orbity równa się połączenie Marsa i Wenus. COD plus XY to the second power plus OS, orbit shift, equals Mars and Venus
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Oblicz: 3 do potęgi 3√3 * 27 do potęgi 1-√3 (2,25 do potęgi -√2/4) do potęgi √2
Oblicz. a) (1 2/3)^3 = (jedna cała i dwie trzecie do potęgi trzeciej) b) (2 1/5)^2= (dwie całe i jedna piąta do potęgi drugiej) c) (-1 3/4)^2= (minus jedna cała i trzy czwarte do potęgi drugiej) d) (-2 1/2)3= (minus dwie całe i jedna druga do potęgi trzeciej Proszę o szczegółowe rozwiązanie i krótkie wytłumaczenie bo nie rozumiem : ). Question from @Carleylol - Gimnazjum
4.2’ x 1.8’ x 2’ 2.8’ x 1.5’ x 3.2’ 1.7’ x 2.25’ x 4.7’ 4.7' x 1.7' x 2.25' Storage Capacity : Designed to fit up to two 60 gallon garbage cans or recycling bins : 8 cubic feet of internal storage : 7 cubic feet of internal storage : 7 cubic feet of internal space : 7 cubic feet of internal space : Color
1. 1². 4. 2² (czytaj: 2 do potęgi 2 lub 2 do kwadratu; inny zapis: 2^2) 9. 3² (3 do potęgi 2; 3 do kwadratu; 3^2) 16. 4² (4 do potęgi 2; 4 do kwadratu; 4^2) 25.
(-3/2)do potęgi -2 (2 i 1/3) -2 (-1 i 1/4)do potęgi -2 0,25 do potęgi -3 (√7) do potęgi -4 (√5/5) -2 BARDZO MI ZALEŻY! basetla. 1 votes
Zatem 125 do potęgi ⅓ to 5. To uprości się więc do: 5 razy… x do potęgi 6 i do potęgi ⅓. Widzieliśmy to poprzednio: zamiast podnosić do potęgi iloczyn, możemy podnieść do potęgi czynniki. Zatem 6 razy ⅓ to 6/3, czyli po prostu 2. Ta część tutaj upraszcza się do: x do potęgi (6 ÷ 3) czyli x². x kwadrat. I wreszcie
2,5 do potęgi 2,5 ile to jest?. Question from @19Wiki94 - Liceum/Technikum - Matematyka. Search. Articles Register ; Sign In . 19Wiki94 @19Wiki94. September 2018 1